Dynamic coloring and list dynamic coloring of planar graphs
نویسندگان
چکیده
منابع مشابه
Dynamic coloring and list dynamic coloring of planar graphs
A dynamic chromatic number χd(G) of a graph G is the least number k such that G has a proper k-coloring of the vertex set V (G) so that for each vertex of degree at least 2, its neighbors receive at least two distinct colors. We show that χd(G) ≤ 4 for every planar graph except C5, which was conjectured in [5]. The list dynamic chromatic number chd(G) of G is the least number k such that for an...
متن کاملdynamic coloring of graph
در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...
15 صفحه اولDynamic list coloring of bipartite graphs
A dynamic coloring of a graph is a proper coloring of its vertices such that every vertex of degree more than one has at least two neighbors with distinct colors. The least number of colors in a dynamic coloring of G, denoted by χ2(G), is called the dynamic chromatic number of G. The least integer k, such that if every vertex of G is assigned a list of k colors, then G has a proper (resp. dynam...
متن کامل3-dynamic coloring and list 3-dynamic coloring of K1, 3-free graphs
For positive integers k and r , a (k, r)-coloring of a graphG is a proper coloring of the vertices with k colors such that every vertex of degree i will be adjacent to vertices with at least min{i, r} different colors. The r-dynamic chromatic number of G, denoted by χr (G), is the smallest integer k for which G has a (k, r)-coloring. For a k-list assignment L to vertices of G, an (L, r)-colorin...
متن کاملList VEF Coloring of Planar Graphs
In this paper the new coloring of planar, VEF-coloring, will be introduced. A VEF coloring of a simple planar graph G is a proper coloring of all elements, including vertices, edges and faces of G. We will give two conjectures for the upper bound of VEF and VEF-list coloring of a simple planar graph. However, we will prove these conjectures for planar graphs with a maximum degree of at least 12...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2013
ISSN: 0166-218X
DOI: 10.1016/j.dam.2013.03.005